# How do I create a sum row and sum column in pandas?

Hello Guys, How are you all? Hope You all Are Fine. Today We Are Going To learn about How do I create a sum row and sum column in pandas in Python. So Here I am Explain to you all the possible Methods here.

## How do I create a sum row and sum column in pandas?

1. How do I create a sum row and sum column in pandas?

From the original data using `crosstab`, if just base on your input, you just need `melt` before `crosstab`

2. I create a sum row and sum column in pandas

From the original data using `crosstab`, if just base on your input, you just need `melt` before `crosstab`

## Method 1

Or in two steps, using the `.sum()` function as you suggested (which might be a bit more readable as well):

```import pandas as pd

df = pd.DataFrame( {"Undergraduate": {"Straight A's": 240, "Not": 3_760},"Graduate": {"Straight A's": 60, "Not": 440},})

#Total sum per column:
df.loc['Total',:]= df.sum(axis=0)

#Total sum per row:
df.loc[:,'Total'] = df.sum(axis=1)
```

Output:

```              Graduate  Undergraduate  Total
Not                440           3760   4200
Straight A's        60            240    300
Total              500           4000   4500```

## Method 2

From the original data using `crosstab`, if just base on your input, you just need `melt` before `crosstab`

```s=df.reset_index().melt('index')
pd.crosstab(index=s['index'],columns=s.variable,values=s.value,aggfunc='sum',margins=True)
Out[33]:
index
Not                440           3760  4200
Straight A's        60            240   300
All                500           4000  4500
```

Toy data

```df=pd.DataFrame({'c1':[1,2,2,3,4],'c2':[2,2,3,3,3],'c3':[1,2,3,4,5]})
# before `agg`, I think your input is the result after `groupby`
df
Out[37]:
c1  c2  c3
0   1   2   1
1   2   2   2
2   2   3   3
3   3   3   4
4   4   3   5

pd.crosstab(df.c1,df.c2,df.c3,aggfunc='sum',margins
=True)
Out[38]:
c2     2     3  All
c1
1    1.0   NaN    1
2    2.0   3.0    5
3    NaN   4.0    4
4    NaN   5.0    5
All  3.0  12.0   15```

## Summery

It’s all About this issue. Hope all Methods helped you a lot. Comment below Your thoughts and your queries. Also, Comment below which Method worked for you? Thank You.