close

How to add a constant column in a Spark DataFrame?

Hello Guys, How are you all? Hope You all Are Fine. Today We Are Going To learn about How to add a constant column in a Spark DataFrame in Python. So Here I am Explain to you all the possible Methods here.

Without wasting your time, Let’s start This Article.

Table of Contents

How to add a constant column in a Spark DataFrame?

  1. How to add a constant column in a Spark DataFrame?

    The difference between the two is that typedLit can also handle parameterized scala types e.g. List, Seq, and Map

  2. add a constant column in a Spark DataFrame

    The difference between the two is that typedLit can also handle parameterized scala types e.g. List, Seq, and Map

Method 1

In spark 2.2 there are two ways to add constant value in a column in DataFrame:

1) Using lit

2) Using typedLit.

The difference between the two is that typedLit can also handle parameterized scala types e.g. List, Seq, and Map

Sample DataFrame:

val df = spark.createDataFrame(Seq((0,"a"),(1,"b"),(2,"c"))).toDF("id", "col1")

+---+----+
| id|col1|
+---+----+
|  0|   a|
|  1|   b|
+---+----+

1) Using lit: Adding constant string value in new column named newcol:

import org.apache.spark.sql.functions.lit
val newdf = df.withColumn("newcol",lit("myval"))

Result:

+---+----+------+
| id|col1|newcol|
+---+----+------+
|  0|   a| myval|
|  1|   b| myval|
+---+----+------+

2) Using typedLit:

import org.apache.spark.sql.functions.typedLit
df.withColumn("newcol", typedLit(("sample", 10, .044)))

Result:

+---+----+-----------------+
| id|col1|           newcol|
+---+----+-----------------+
|  0|   a|[sample,10,0.044]|
|  1|   b|[sample,10,0.044]|
|  2|   c|[sample,10,0.044]|
+---+----+-----------------+

Method 2

Spark 2.2+

Spark 2.2 introduces typedLit to support SeqMap, and Tuples (SPARK-19254) and following calls should be supported (Scala):

import org.apache.spark.sql.functions.typedLit

df.withColumn("some_array", typedLit(Seq(1, 2, 3)))
df.withColumn("some_struct", typedLit(("foo", 1, 0.3)))
df.withColumn("some_map", typedLit(Map("key1" -> 1, "key2" -> 2)))

Spark 1.3+ (lit), 1.4+ (arraystruct), 2.0+ (map):

The second argument for DataFrame.withColumn should be a Column so you have to use a literal:

from pyspark.sql.functions import lit

df.withColumn('new_column', lit(10))

If you need complex columns you can build these using blocks like array:

from pyspark.sql.functions import array, create_map, struct

df.withColumn("some_array", array(lit(1), lit(2), lit(3)))
df.withColumn("some_struct", struct(lit("foo"), lit(1), lit(.3)))
df.withColumn("some_map", create_map(lit("key1"), lit(1), lit("key2"), lit(2)))

Exactly the same methods can be used in Scala.

import org.apache.spark.sql.functions.{array, lit, map, struct}

df.withColumn("new_column", lit(10))
df.withColumn("map", map(lit("key1"), lit(1), lit("key2"), lit(2)))

To provide names for structs use either alias on each field:

df.withColumn(
    "some_struct",
    struct(lit("foo").alias("x"), lit(1).alias("y"), lit(0.3).alias("z"))
 )

or cast on the whole object

df.withColumn(
    "some_struct", 
    struct(lit("foo"), lit(1), lit(0.3)).cast("struct<x: string, y: integer, z: double>")
 )

It is also possible, although slower, to use an UDF.

Conclusion

It’s all About this issue. Hope all Methods helped you a lot. Comment below Your thoughts and your queries. Also, Comment below which Method worked for you? Thank You.

Also, Read