close

How to Create Dataframe from AWS Athena using Boto3 get_query_results method

Hello Guys, How are you all? Hope You all Are Fine. Today We Are Going To learn about How to Create Dataframe from AWS Athena using Boto3 get_query_results method in Python. So Here I am Explain to you all the possible Methods here.

Without wasting your time, Let’s start This Article.

Table of Contents

How to Create Dataframe from AWS Athena using Boto3 get_query_results method?

  1. How to Create Dataframe from AWS Athena using Boto3 get_query_results method?

    You can use AWS Data Wrangler to create pandas data frame directly querying through Athena.

  2. Create Dataframe from AWS Athena using Boto3 get_query_results method

    You can use AWS Data Wrangler to create pandas data frame directly querying through Athena.

Method 1

get_query_results only returns 1000 rows. How can I use it to get two million rows into a Pandas dataframe?

If you try to add:

client.get_query_results(QueryExecutionId=res['QueryExecutionId'], MaxResults=2000)

You will obtain the next error:

An error occurred (InvalidRequestException) when calling the GetQueryResults operation: MaxResults is more than maximum allowed length 1000.

You can obtain millions of rows if you obtain the file directly from your bucket s3 (in the next example into a Pandas Dataframe):

def obtain_data_from_s3(self):
    self.resource = boto3.resource('s3', 
                          region_name = self.region_name, 
                          aws_access_key_id = self.aws_access_key_id,
                          aws_secret_access_key= self.aws_secret_access_key)

    response = self.resource \
    .Bucket(self.bucket) \
    .Object(key= self.folder + self.filename + '.csv') \
    .get()

    return pd.read_csv(io.BytesIO(response['Body'].read()), encoding='utf8')   

The self.filename can be:

self.filename = response['QueryExecutionId'] + ".csv"

Because Athena names the files as the QueryExecutionId. I will write you all my code that takes a query and return a dataframe with all the rows and columns.

import time
import boto3
import pandas as pd
import io

class QueryAthena:

    def __init__(self, query, database):
        self.database = database
        self.folder = 'my_folder/'
        self.bucket = 'my_bucket'
        self.s3_input = 's3://' + self.bucket + '/my_folder_input'
        self.s3_output =  's3://' + self.bucket + '/' + self.folder
        self.region_name = 'us-east-1'
        self.aws_access_key_id = "my_aws_access_key_id"
        self.aws_secret_access_key = "my_aws_secret_access_key"
        self.query = query

    def load_conf(self, q):
        try:
            self.client = boto3.client('athena', 
                              region_name = self.region_name, 
                              aws_access_key_id = self.aws_access_key_id,
                              aws_secret_access_key= self.aws_secret_access_key)
            response = self.client.start_query_execution(
                QueryString = q,
                    QueryExecutionContext={
                    'Database': self.database
                    },
                    ResultConfiguration={
                    'OutputLocation': self.s3_output,
                    }
            )
            self.filename = response['QueryExecutionId']
            print('Execution ID: ' + response['QueryExecutionId'])

        except Exception as e:
            print(e)
        return response                

    def run_query(self):
        queries = [self.query]
        for q in queries:
            res = self.load_conf(q)
        try:              
            query_status = None
            while query_status == 'QUEUED' or query_status == 'RUNNING' or query_status is None:
                query_status = self.client.get_query_execution(QueryExecutionId=res["QueryExecutionId"])['QueryExecution']['Status']['State']
                print(query_status)
                if query_status == 'FAILED' or query_status == 'CANCELLED':
                    raise Exception('Athena query with the string "{}" failed or was cancelled'.format(self.query))
                time.sleep(10)
            print('Query "{}" finished.'.format(self.query))

            df = self.obtain_data()
            return df

        except Exception as e:
            print(e)      

    def obtain_data(self):
        try:
            self.resource = boto3.resource('s3', 
                                  region_name = self.region_name, 
                                  aws_access_key_id = self.aws_access_key_id,
                                  aws_secret_access_key= self.aws_secret_access_key)

            response = self.resource \
            .Bucket(self.bucket) \
            .Object(key= self.folder + self.filename + '.csv') \
            .get()

            return pd.read_csv(io.BytesIO(response['Body'].read()), encoding='utf8')   
        except Exception as e:
            print(e)  


if __name__ == "__main__":       
    query = "SELECT * FROM bucket.folder"
    qa = QueryAthena(query=query, database='myAthenaDb')
    dataframe = qa.run_query()

Method 2

You can use AWS Data Wrangler to create pandas data frame directly querying through Athena.

import awswrangler as wr  
df = wr.athena.read_sql_query(sql="SELECT * FROM <table_name_in_Athena>", database="<database_name>")

Summery

It’s all About this issue. Hope all Methods helped you a lot. Comment below Your thoughts and your queries. Also, Comment below which Method worked for you? Thank You.

Also, Read