close

How to print the value of a Tensor object in TensorFlow?

Hello Guys, How are you all? Hope You all Are Fine. Today We Are Going To learn about How to print the value of a Tensor object in TensorFlow in Python. So Here I am Explain to you all the possible Methods here.

Without wasting your time, Let’s start This Article.

Table of Contents

How to print the value of a Tensor object in TensorFlow?

  1. How to print the value of a Tensor object in TensorFlow?

    While other answers are correct that you cannot print the value until you evaluate the graph, they do not talk about one easy way of actually printing a value inside the graph, once you evaluate it.

  2. print the value of a Tensor object in TensorFlow

    While other answers are correct that you cannot print the value until you evaluate the graph, they do not talk about one easy way of actually printing a value inside the graph, once you evaluate it.

Method 1

The easiest[A] way to evaluate the actual value of a Tensor object is to pass it to the Session.run() method, or call Tensor.eval() when you have a default session (i.e. in a with tf.Session(): block, or see below). In general[B], you cannot print the value of a tensor without running some code in a session.

If you are experimenting with the programming model, and want an easy way to evaluate tensors, the tf.InteractiveSession lets you open a session at the start of your program, and then use that session for all Tensor.eval() (and Operation.run()) calls. This can be easier in an interactive setting, such as the shell or an IPython notebook, when it’s tedious to pass around a Session object everywhere. For example, the following works in a Jupyter notebook:

with tf.Session() as sess:  print(product.eval()) 

This might seem silly for such a small expression, but one of the key ideas in Tensorflow 1.x is deferred execution: it’s very cheap to build a large and complex expression, and when you want to evaluate it, the back-end (to which you connect with a Session) is able to schedule its execution more efficiently (e.g. executing independent parts in parallel and using GPUs).


[A]: To print the value of a tensor without returning it to your Python program, you can use the tf.print() operator, as Andrzej suggests in another answer. According to the official documentation:

To make sure the operator runs, users need to pass the produced op to tf.compat.v1.Session‘s run method, or to use the op as a control dependency for executed ops by specifying with tf.compat.v1.control_dependencies([print_op]), which is printed to standard output.

Also note that:

In Jupyter notebooks and colabs, tf.print prints to the notebook cell outputs. It will not write to the notebook kernel’s console logs.

[B]: You might be able to use the tf.get_static_value() function to get the constant value of the given tensor if its value is efficiently calculable.

Method 2

While other answers are correct that you cannot print the value until you evaluate the graph, they do not talk about one easy way of actually printing a value inside the graph, once you evaluate it.

The easiest way to see a value of a tensor whenever the graph is evaluated (using run or eval) is to use the Print operation as in this example:

# Initialize session
import tensorflow as tf
sess = tf.InteractiveSession()

# Some tensor we want to print the value of
a = tf.constant([1.0, 3.0])

# Add print operation
a = tf.Print(a, [a], message="This is a: ")

# Add more elements of the graph using a
b = tf.add(a, a)

Now, whenever we evaluate the whole graph, e.g. using b.eval(), we get:

I tensorflow/core/kernels/logging_ops.cc:79] This is a: [1 3]

Conclusion

It’s all About this issue. Hope all Methods helped you a lot. Comment below Your thoughts and your queries. Also, Comment below which Method worked for you? Thank You.

Also, Read