close

[Solved] Error: The truth value of a Series is ambiguous – Python pandas

Hello Guys, How are you all? Hope You all Are Fine. Today I get the following error Error: The truth value of a Series is ambiguous – Python pandas in python. So Here I am Explain to you all the possible solutions here.

Without wasting your time, Let’s start This Article to Solve This Error.

How Error: The truth value of a Series is ambiguous – Python pandas Error Occurs?

Today I get the following error Error: The truth value of a Series is ambiguous – Python pandas in python.

How To Solve Error: The truth value of a Series is ambiguous – Python pandas Error ?

  1. How To Solve Error: The truth value of a Series is ambiguous – Python pandas Error ?

    To Solve Error: The truth value of a Series is ambiguous – Python pandas Error These are overloaded for these kind of datastructures to yield the element-wise or (or and).

  2. Error: The truth value of a Series is ambiguous – Python pandas

    To Solve Error: The truth value of a Series is ambiguous – Python pandas Error These are overloaded for these kind of datastructures to yield the element-wise or (or and).

Solution 1

The or and and python statements require truth-values. For pandas these are considered ambiguous so you should use “bitwise” | (or) or & (and) operations:

result = result[(result['var']>0.25) | (result['var']<-0.25)]

These are overloaded for these kind of datastructures to yield the element-wise or (or and).


Just to add some more explanation to this statement:

The exception is thrown when you want to get the bool of a pandas.Series:

>>> import pandas as pd
>>> x = pd.Series([1])
>>> bool(x)
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

What you hit was a place where the operator implicitly converted the operands to bool (you used or but it also happens for andif and while):

>>> x or x
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
>>> x and x
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
>>> if x:
...     print('fun')
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
>>> while x:
...     print('fun')
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

Besides these 4 statements there are several python functions that hide some bool calls (like anyallfilter, …) these are normally not problematic with pandas.Series but for completeness I wanted to mention these.


In your case the exception isn’t really helpful, because it doesn’t mention the right alternatives. For and and or you can use (if you want element-wise comparisons):

  • numpy.logical_or:>>> import numpy as np >>> np.logical_or(x, y) or simply the | operator:>>> x | y
  • numpy.logical_and:>>> np.logical_and(x, y) or simply the & operator:>>> x & y

If you’re using the operators then make sure you set your parenthesis correctly because of the operator precedence.

There are several logical numpy functions which should work on pandas.Series.


The alternatives mentioned in the Exception are more suited if you encountered it when doing if or while. I’ll shortly explain each of these:

  • If you want to check if your Series is empty:>>> x = pd.Series([]) >>> x.empty True >>> x = pd.Series([1]) >>> x.empty False Python normally interprets the length of containers (like listtuple, …) as truth-value if it has no explicit boolean interpretation. So if you want the python-like check, you could do: if x.size or if not x.empty instead of if x.
  • If your Series contains one and only one boolean value:>>> x = pd.Series([100]) >>> (x > 50).bool() True >>> (x < 50).bool() False
  • If you want to check the first and only item of your Series (like .bool() but works even for not boolean contents):>>> x = pd.Series([100]) >>> x.item() 100
  • If you want to check if all or any item is not-zero, not-empty or not-False:>>> x = pd.Series([0, 1, 2]) >>> x.all() # because one element is zero False >>> x.any() # because one (or more) elements are non-zero True

Solution 2

Well pandas use bitwise & | and each condition should be wrapped in a ()

For example following works

data_query = data[(data['year'] >= 2005) & (data['year'] <= 2010)]

But the same query without proper brackets does not

data_query = data[(data['year'] >= 2005 & data['year'] <= 2010)]

Summery

It’s all About this issue. Hope all solution helped you a lot. Comment below Your thoughts and your queries. Also, Comment below which solution worked for you? Thank You.

Also, Read